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Takeaway Goals

* Problems
* Help the clinicians or scientists (don’t replace them)

* Tools and approaches
* Probabilities, convolutions, and anatomical models
* Clinical interpretation

* Challenges
* The systems don’t really work (yet)

* Opportunity

* Impact healthcare (and research)!



Medical Imaging

* Crucial tool in clinical practice
* Diagnostic (and incidental findings)
* Planning treatment
* Guide small and large interventions
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Medical Imaging

* Crucial tool in clinical practice
* Diagnostic (and incidental findings)
* Planning treatment
* Guide small and large interventions

* Research
* Clinical studies
e Scientific studies



Medical Image Analysis
(or: how can we help?)

* Diagnosis algorithms - require large datasets

* Visualization - learn what to show, widely overlooked?

* Segmentation - outline, measure anatomy and pathology

* Registration - alignment for treatment planning, population analysis
* Acquisition - faster, better

* Abnormality detection - pathology

* Shape modelling

* Joint inference with other clinical data



Properties of Medical Images

* Varies dramatically by image type



Fourier
Transfor

<+













axial



sagittal



coronal



Variability and similarity




Properties

* Vary dramatically by image type

MR Image quality:

* Different noise patterns, patient motion, disease, many modalities

Commonality of anatomy

Pathology
* can be big and obvious (e.g. tumor)...
* ...orvery small and subtle (e.g. neurodegeneration)

A lot of 3+ dimensions
* So ‘voxel’ (volume element) instead of ‘pixel’ (picture element)



Questions?
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Image Segmentation




Image Segmentation




Supervised segmentation

seg = fe(image)




Supervised segmentation

Large example dataset: solved problem by DL?

seg = fg(image)




What kind of NN?




VGG, etc?

Use existing multi-label networks

Architecture: convolutions, max-pools, fully connected, etc.

But need to output 8 million voxels! — hours!
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Fully convolutional?

Input-output both high dimensional, no max-pooling (make 3D)

10-layer network: don’t have enough context to predict anatomy

Deep networks (100 layers) — too many parameters

# channels = # labels
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Multi-scale inputs

Input Segment Convolutional Layers Fully Connected Layers
(Normal resolution) (as Convolutions with 13 kernels)

Brain MRI

. la i . Classification

Layer
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Kamnitsas, et al., MedIA 2016



U-Net
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What kind of CNN?

Network architecture

* Predict each voxel (e.g. 3D VGG)? too slow, cumbersome

* Fully Convolutional? Large memory, parameter space, not enough field of
view

* Multiscale input?

* UNet!



Results

Dice (Volume Overlap) Dice (Volume Overlap) Runtime

FreeSurfer (e.g. classical state of the art) ~80 ~6-24 hours

Deep Methods ~85-91 ~1 second-1 hour




Problems

* Often don’t actually have these segmented data
* Long time to segment for experts!

* Too many modalities

* Too much variation (especially pathologies)

* Our metrics
* Easy to compute, differentiate
* Often not anatomically meaningful

P. Moeskops et al, DLMIA, 2017



Segmentation in a more realistic setting

Few (one) segmented example




Probabilistic (Generative) Model

* Define segmentation ->image model p(I|S) * P(S)

* Enables knowledge (priors) into

segmentation model p(S§)

p(S) defined based on likely *shapes™ of each label
P(1]S) is the intensity (distribution) for each label
Inference: p(S|I) at each voxel: label matches the intensity such that shapes make sense.



Probabilistic (Generative) Model

* Combine with deep learning predictions:

p(S) can be anatomically specified
or learned from another distribution

* Attach prior to network, or modelling through VAEs, etc...

GAN based prior
P. Moeskops et al, DLMIA



Brains are similar!

* Can similarity of brains help?




Questions?
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Image Registration

moving scan m fixed scan f



Image Registration

moving scan m fixed scan f



Traditional approach

sCanm

warped scanm
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Traditional approach

SCanm

warped scanm

R , |
b, = argming |[mo¢g — f[| + A1 ||Ve||
$ ~ ~" - ~

optimal deformation field images match Anatomically
smooth

[ Pairwise optimization: slow (hours per image on ]
CPU)




How can machine learning help?

scan'y scan x



Supervised Learning
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What kind of architecture?
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Supervised Learning

scan'y scan x

fast for new image pair!
need ground truth registration ¢




Unsupervised Learning: VoxelMorph

Moving 3D Image (m) voxelmorph.mit.edu
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Unsupervised Learning: VoxelMorph

Moving 3D Image (m) voxelmorph.mit.edu
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Registering a new image pair

Moving 3D Image (m)

\ l le deformatio
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Runtime for a new 3D image pair

runtime (sec)
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6000 -

4000

2000

> 2 hours

baseline




How to evaluate?

scan m scanf

pair 1

*algorithms only see images, no segmentation maps

51



Accuracy via volume overlap (Dice)
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Remarks

*  We derive network probabilistically from probabilistic model

« p(mle; f) xp(d) - p(ep|m; f)

* Variational approximation to p(¢|m; f) leads to network

* Can impose stricter anatomical consistency (diffeomorphisms)
* Provide topological guarantees

* (Can use segmentations during training if we have them.

Dalca et al, MICCAI 2018



Going back to segmentation...

* Can similarity of brains help?




Questions?




Caveat: registration isn’t perfect

* Supervised segmentation (with 200 training images): 85 + 9
* Registration-based segmentation (with 1 training image): 76 +14



Caveat: registration isn’t perfect

* Supervised segmentation (with 200 training images): 85 + 9
* Registration-based segmentation (with 1 training image): 76 +14

* Combine advantages!



Supervised segmentation
& registration

* Register training image
to every image in dataset
* distribution of transforms

* Warp labelled scan and segments
to produce supervised dataset

* Span anatomical distribution
* Accurately segmented

Registration

Warp image and

segmentations

\4

Zhao et al, in submission



“Supervised” Network

* Train supervised segmentation on synthesized “realistic” data
accuracy increase 76 (+14) —» 81.5 (+ 12)

Synthetic
Images

Synthetic

CNN (UNet)

N Segmentations

Zhao et al, in submission



Results
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Conclusions

* A lot of medical imaging data
* Machine (deep) learning enabling fast, successful methods

* In realistic scenarios, usually few labelled images

* Combine learning concepts and clinical knowledge
* Limited supervised data: leverage unlabeled data

* Large data: anatomically regularized deep networks

* Measure success if you impact downstream clinical tasks!



Outline

* Overview of Medical Imaging
e Utility and properties

 Example: Segmentation
* Classical and deep learning approaches

* Example: Registration (alignment):
* Optimization and learning approaches

* Takeaways



Takeaway Goals

* Problems
* Help the clinicians or scientists (don’t replace them)

* Tools and approaches
* Probabilities, convolutions, and anatomical models
* Clinical interpretation

* Challenges
* The systems don’t really work (yet)

* Opportunity

* Impact healthcare (and research)!



