Machine Learning for Medical Image Analysis

Adrian V. Dalca

MIT CSAIL and Massachusetts General Hospital, Harvard Medical School

Outline

- Overview of Medical Imaging
 - Utility and properties
- Example: Segmentation
 - Classical and deep learning approaches
- Example: Registration (alignment):
 - Optimization and learning approaches
- Takeaways

Takeaway Goals

- Problems
 - Help the clinicians or scientists (don't replace them)
- Tools and approaches
 - Probabilities, convolutions, and anatomical models
 - Clinical interpretation
- Challenges
 - The systems don't really work (yet)
- Opportunity
 - Impact healthcare (and research)!

Medical Imaging

- Crucial tool in clinical practice
 - Diagnostic (and incidental findings)
 - Planning treatment
 - Guide small and large interventions
 - ...

Medical Imaging

- Crucial tool in clinical practice
 - Diagnostic (and incidental findings)
 - Planning treatment
 - Guide small and large interventions
 - ...
- Research
 - Clinical studies
 - Scientific studies

Medical Image **Analysis** (or: how can we help?)

- Diagnosis algorithms require large datasets
- Visualization learn what to show, widely overlooked?
- **Segmentation** outline, measure anatomy and pathology
- **Registration** alignment for treatment planning, population analysis
- Acquisition faster, better
- Abnormality detection pathology
- Shape modelling

. . .

Joint inference with other clinical data

Properties of Medical Images

• Varies dramatically by image type

Fourier Transfor

coronal

Variability and similarity

Properties

- Vary dramatically by image type
- MR Image quality:
 - Different noise patterns, patient motion, disease, many modalities
- Commonality of anatomy
- Pathology
 - can be big and obvious (e.g. tumor)...
 - ... or very small and subtle (e.g. neurodegeneration)
- A lot of 3+ dimensions
 - So 'voxel' (volume element) instead of 'pixel' (picture element)

Questions?

Outline

- Overview of Medical Imaging
 - Utility and properties
- Example: Segmentation
 - Classical and deep learning approaches
- Example: Registration (alignment):
 - Optimization and learning approaches
- Takeaways

Image Segmentation

Image Segmentation

Supervised segmentation

$$seg = f_{\phi}(image)$$

Supervised segmentation

Large example dataset: solved problem by DL?

$$seg = f_{\phi}(image)$$

What kind of NN?

VGG, etc?

Use existing multi-label networks

Architecture: convolutions, max-pools, fully connected, etc.

But need to output 8 million voxels! – hours!

anatomical label (one-hot encoding)

Fully convolutional?

Input-output both high dimensional, no max-pooling (make 3D)

10-layer network: don't have enough context to predict anatomy

Deep networks (100 layers) – too many parameters

channels = # labels

Multi-scale inputs

U-Net

Ronneberger et al, 2015

What kind of CNN?

Network architecture

- Predict each voxel (e.g. 3D VGG)? too slow, cumbersome
- Fully Convolutional? Large memory, parameter space, not enough field of view
- Multiscale input?
- UNet!

Results

Dice (Volume Overlap)	Dice (Volume Overlap)	Runtime
FreeSurfer (e.g. classical state of the art)	~80	~6-24 hours
Deep Methods	~85-91	~1 second-1 hour

Problems

- Often don't actually have these segmented data
 - Long time to segment for experts!
 - Too many modalities
 - Too much variation (especially pathologies)
- Our metrics
 - Easy to compute, differentiate
 - Often not anatomically meaningful

Segmentation in a more realistic setting

Few (one) segmented example

Probabilistic (Generative) Model

• Define segmentation -> image model p(I|S) * P(S)

- Enables knowledge (priors) into segmentation model p(S)
 - p(S) defined based on likely *shapes* of each label
 - P(I|S) is the intensity (distribution) for each label
 - Inference: p(S|I) at each voxel: label matches the intensity such that shapes make sense.

Probabilistic (Generative) Model

- Combine with deep learning predictions:
 p(S) can be anatomically specified
 or learned from another distribution
- Attach prior to network, or modelling through VAEs, etc...

GAN based prior P. Moeskops et al, DLMIA,

Brains are similar!

• Can similarity of brains help?

Questions?

Outline

- Overview of Medical Imaging
 - Utility and properties
- Example: Segmentation
 - *Classical* and deep learning approaches
- Example: Registration (alignment):
 - Optimization and learning approaches
- Takeaways

Image Registration

fixed scan f

moving scan $m{m}$

Image Registration

fixed scan f

moving scan $m{m}$

Traditional approach

scan **f**

Traditional approach

CPU)

How can machine learning help?

Supervised Learning

scan **y**

What kind of architecture?

Ronneberger et al, 2015

Supervised Learning

scan **y**

scan \pmb{x}

field ϕ

fast for new image pair! need ground truth registration ϕ

Unsupervised Learning: VoxelMorph

Unsupervised Learning: VoxelMorph

Registering a new image pair

Moving 3D Image (*m*)

Runtime for a new 3D image pair

How to evaluate?

*algorithms only see images, no segmentation maps

Accuracy via volume overlap (Dice)

Remarks

- We derive network probabilistically from probabilistic model
 - $p(m|\phi; f) * p(\phi) \rightarrow p(\phi|m; f)$
 - Variational approximation to $p(\phi|m; f)$ leads to network

- Can impose stricter anatomical consistency (diffeomorphisms)
 - Provide topological guarantees
- Can use segmentations during training if we have them.

Going back to segmentation...

• Can similarity of brains help?

Questions?

Caveat: registration isn't perfect

- Supervised segmentation (with 200 training images): 85 ± 9
- Registration-based segmentation (with 1 training image): 76 ± 14

Caveat: registration isn't perfect

- Supervised segmentation (with 200 training images): 85 ± 9
- Registration-based segmentation (with 1 training image): 76 ± 14

• Combine advantages!

Supervised segmentation & registration

- Register training image to every image in dataset
 - distribution of transforms

- Warp labelled scan and segments to produce *supervised dataset*
 - Span anatomical distribution
 - Accurately segmented

"Supervised" Network

• Train supervised segmentation on synthesized "realistic" data accuracy increase 76 (± 14) $\rightarrow 81.5$ (± 12)

Results

Zhao et al, in submission

Conclusions

- A lot of medical imaging data
 - Machine (deep) learning enabling fast, successful methods
- In realistic scenarios, usually few labelled images
- Combine learning concepts and clinical knowledge
 - Limited supervised data: leverage unlabeled data
 - Large data: anatomically regularized deep networks
- Measure success if you impact **downstream clinical tasks**!

Outline

- Overview of Medical Imaging
 - Utility and properties
- Example: Segmentation
 - Classical and deep learning approaches
- Example: Registration (alignment):
 - Optimization and learning approaches

Takeaways

Takeaway Goals

- Problems
 - Help the clinicians or scientists (don't replace them)
- Tools and approaches
 - Probabilities, convolutions, and anatomical models
 - Clinical interpretation
- Challenges
 - The systems don't really work (yet)
- Opportunity
 - Impact healthcare (and research)!